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Abstract--There is a lack of data on transient interphase shear forces on bubbles. The present work is an 
experimental and analytical investigation of unsteady bubble motions induced by shock waves. Bubble 
trajectories were monitored in a shock tube using high-speed Schlieren photographs. Pressure histories at two 
locations weere used to determine the average wave speed in the bubbly mixture. An equation of motion was 
developed and solved for predicting the bubble trajectories and velocities. Reasonable agreement is obtained 
between the experimental results and the analytical predictions. It was found that for experimental range of 
Reynolds numbers (200-12,000), a constant drag coefficient CO = 2.6 can be utilized to estimate the drag force. 

I N T R O D U C T I O N  
The two-fluid formulation of transient two phase flows requires expressions for interphase 
shear. The available data on shear forces associated with transient bubble motions are quite 
scarce. Such data is important, for example, in understanding the flashing due to sudden 
decompression of a pressurized system, e.g. the primary coolant in Pressurized Water Reactors. 
(PWRs). Presently, there is a lack of data on unsteady bubble trajectories and velocity profiles. 
One method to obtain such data is to accelerate bubbles by the interaction with shock waves. 
Previous studies, however, looked at the structure of the waves, the behavior of the pressure, 
the shock velocity, the shock relations for void fractions, etc. but there is still a lack of 
information on the motion of the bubble after the shock. 

Crespo (1%9) investigated the effects of the relative motion of gas bubbles in liquid and 
their mass fraction fluctuations in the wave velocities. He also found that the shock structure 
depends on both low- and high-frequency Mach numbers: when both are larger than one, the 
pressure behind the shock oscillates. The oscillations disappear when the latter is smaller than 
one. 

Van-Wijngaarden et al. (1968), (1970), (1972), Noordzij (1974) and Prosperetti (1976) con- 
centrated efforts on the equation of motion and the shock structure in bubbly flows, especially 
on the unsteady pressure behavior. The experiments reported by Campbell & Pitcher (1958), 
Noordzij (1973), Nyer & Schrock (1967) and Gel'fand et al. (1975) generally dealt with 
measurements of wave speed and attenuation of pressure oscillations in the bubbly mixture. 
Cambell & Pitcher (1958) also developed isothermal jump conditions for pressures, velocities 
and void fractions. The results were extended by Noordzij & van Wijngaarden (1974) for 
adiabatic jump conditions. 

The steady motion of bubbles in liquids has been studied quite extensively. Peebles & 
Garber (1953) summarized the results for drag coefficient on bubbles in various liquids and for a 
wide range of flow conditions, determined by the Reynolds number. They also discussed the 
bubble geometries and deformations. Ishii & Zuber (1979) developed drag coefficients and 
correlations for relative two phase dispersed motions. Their derivation is based on simplified 
similarity criteria and a mixture viscosity model. Moore (1965) investigated the terminal rise 
velocity of a bubble in a pure liquid and the effects of the bubble distortion on the drag 
coefficient for low Reynolds numbers. 

For accelerating flows of solid particles, considerable changes of the drag coefficient, Co, 

may take place. Lugt & Haussling (1978) studied numerically the start from rest of a thin 
cylindrical body in a viscous fluid. Their results show that co increases by an order of 
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magnitude and then decreases to about the "regular" steady-state value during a short time. 
This phenomenon is caused by the starting vortices behind the leading and trailing edges. 
Another interesting phenomenon was discovered by Tyler & Salt (1978), namely, periodic 
oscillations of the drage force on solid spheres in accelerating flows (caused by a passage of a 
shock wave). This behavior is attributed, again, to the formation and abrupt detachment of low 
pressure vortices in the wake. They found an increase of 10-20 per cent above the steady-state 
value of the drag coefficient. 

Karanfilian & Kotas (1978) experimentally studied the drag on a solid sphere subjected to a 
simple harmonic motion in a viscous liquid. They correlated the data by a correction factor for 
the drag coefficient, which depends on the ratio of the acceleration and the square of the 
velocity. 

As mentioned above, information on drag coefficients for accelerating bubbles is still not 
available. Morrison & Stewart (1976) showed that the drag differs significantly than that for 
solid particles. They used Fourier transform to obtain relative magnitude and phase angles (as 
functions of the frequency of oscillations) for low Reynolds numbers. 

This paper includes an analytical and experimental investigation of the unsteady bubble 
motion behind a shock wave. The motion is governed by wave-induced fluid flow, interracial 
drag, buoyancy and bubble geometry. Therefore, the bubble trajectories are dominated by an 
unsteady relative motion between the two phases, induced by the shock wave. An equation for 
the bubble motion is derived, taking into account all these effects, where the history of the 
bubble distortion is included in the form of the Basset force (see Landau & Lifshitz 1959). The 
equation is solved for low and high Reynolds numbers to yield the bubble velocity. 

The experiments consisted of shock wave propagations in bubbly mixtures of low void 
fractions. The propagation speed of the shock in the two-phase mixture was measured and the 
liquid velocity was derived from these measurements. High-speed Schlieren photography was 
used to trace bubble trajectories; the bubble velocities were determined from these measure- 
ments. 

The analytical results are compared to the experimental data. It is shown that for the high 
Reynolds number range (2000-12,000), a constant drag coefficient CO = 2.6 can be utilized to 
estimate the drag force. The effect of the Basset force in this range is negligible. 

ANALYSIS  

The equation of motion of a bubble can be written in the following formt (see Brodkey 
1967, van-Wijngaarden 1970 and Noordij & van-Wijngaarden 1974): 

1 3 //.,\1/2 r t  d w / d t '  _ , 

) Jo [1] 

where the relative velocity w is defined by 

w = u - v, [2] 

u and v are the liquid and bubble velocities, taken as positive in the downward direction; p and 
po are the liquid and bubble densities; D, A and v are the bubble diameter, cross sectional area 
and volume; co  is the drag coefficient and v is the kinematic viscosity. The inertia term on the 
l.h.s, side of [1] includes the virtual (added) mass ApV.  The coefficient A for a spherical bubble 

"tit is noted that [1] corresponds to a no-slip condition on the interface. A somewhat difference formulation exists for 
the case of zero stress at the bubble surface (see Morrison & Stewart 1976). According to Moore (1965), the no-slip 
formulation applies to ordinary water, which always contains significant amounts of impurity. 
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can be written as (see Prosperetti & van-Wijngaarden 1976): 

1 ,~ = ~ (1 + 2.78a) + O(a 2) [3a] 

or (Ishii & Zuber 1979): 

1 l + 2 a  1 
'~ = 2 1 - a = 2 (1 + 3a) + O(a 2) [3b] 

where a is the void fraction. In these forms, the interaction of the bubbles is taken into 
account. When the void fraction a is small (a ~ 1), the apparent mass coefficient tends to the 
value A = 1/2 for a single bubble (see also WaUis 1965). For the experimental conditions 
reported below, the void fractions were very small, particularly behind the shock. Moreover, 
the variations of a are also very small. Therefore, the virtual mass coefficient is taken as 
A -- 1/2 in the following analysis. 

The first term on the r.h.s, of [1] represents the pressure forces acting on the bubble. Again 
this term can be neglected behind the shock. These approximations are discussed below in view 
of the experimental results. 

The third term on the r.h.s, of [1] is the body force (buoyancy) and the last term is the Basset 
force, which includes the effects of the boundary layer development on the accelerating bubble. 

The drag coefficient co in the second term of the equation depends on the flow regime, 
characterized by the Reynolds number, Re = wD/u. For relatively low values of Re, the drag 
coefficient is given by 24/Re, corresponding to Stoke's drag force, which is linear in the relative 
velocity. This relation holds even for Reynolds numbers high enough for inertia forces to 
dominate over viscous forces, but only until considerable bubble deformations occur (at 
Re > 400) (see Peebles & Garber 1953). This case was considered by van-Wijngaarden (1970, 
1972). For the experimental conditions of the present work, the Reynolds number range was 
2000-12,000; the solution of [1] with co = 24/Re (see Appendix), does not agree, indeed, with 
the data. 

According to Peebles & Garber (1953) and Ishii & Zuber (1979), the drag coefficient in this 
range of the Reynolds number is nearly constant, co = 2.6. This value is therefore adopted in 
the following analysis. 

With these assumptions and observing also that p# ~ p, [1] reduces to: 

fo' dw[dt' . ,  d--EW = - Blwrw- 2g-  X / ~ ' )  °t [4] 

where 

B - c o A  E - 3¢rD2 (v)I/2 
V ' V = [5] 

Equation [4] is written now in the following non-dimensional form: 

d W fo" d W/dz' dr' [6] d~ " = - I w l w -  q'2-4' x/(~- r ' - - - - ~  

where 

W -  w t ~: _ 2g E 
--W0, T ~ " ~ ,  =B~o2 , ~ b = ~  [7] 
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Wo is the initial relative velocity and the characteristic time is defined by: 

t* =- (Bwo) -I . [8] 

In the following, several approximate solutions of [6] are given for various time domains. 
Another solution, for small Reynolds numbers were Co = 48/Re, is given in the Appendix. 

For small times (after the shock), the buoyancy forces are small compared to the drag 
forces, thus 02 can be neglected in [6]. The integro-differential equation can then be solved in 
the following manner: first, the dependent variable W is written in terms of d W/dr. Equation [6] 
reduces than to an integral equation for the latter which is solved analytically by the method of 
successive approximations (see Wittaker & Watson 1962). The resulting solution is then 
integrated once to yield the dimensionless relative velocity W. The solution, which satisfies the 
initial condition W = 1 (w = Wo) at r = 0, is given in the form of the series: 

W = l - r + ~ b r 3 / 2 + ( 1 - 2 ~ b 2 )  2 16.  r -  T~ ~ ( 2 -  2 ~b2) r5/2 + O(r3). [9] 

This solution can also be rearranged in the following manner: 

_ 4 .  3/2 7r 2 2 16 ( zr ) W = l - , + ~ + " ' * S e ,  - g ~ - ~ 3 6  2 - ~ 6  ~ ~'~+"'+0(~). [lo] 

As can easily be seen, the first terms in [10] are also the first terms in the expansion of: 

1 
W =  i+-- S [lll 

which is the solution of [6] for intermediate times, when the buoyancy term can still be 
neglected and the Basset force effects tend to vanish. The expansion in series of [11] is valid in 
the range r ~  < I and the first three term of this expansion and also in [10] are within 10 per cent 
accuracy for r<0.4.  A comparison of the solutions [10] and [11] is shown in figure 1 for 
~b = 0.044 which corresponds to the experimental conditions of both runs listed in table 1. The 
figures also includes the curve given by the first three terms of the series expansion. As can be 
seen, the effect of the Basset force is very small; the correction, represented by the terms 
including ~ in [10] is less than 1 per cent of the series expansion. For longer times, the Basset 
force becomes less significant. The approximate solution [l l ] is therefore used in section 4 for 
the comparison with the experimental data. 

Finally, [6] is solved for longer times, where the Basset force can be neglected and the 
buoyancy term is important. The solution is given in two parts; the first: 

W = 1 - IOtgOr , 0 ~< r ~< ro = ~ arc tg ~1 [12a] 
l + -~ tg07 

is for the decrease of the relative velocity until it reaches zero value at the time indicated in 
[12a]. Then the rise of the bubble is given by: 

W = tO exp [20(r - to)] - 1 
- exp [20(r - ro)] + 1 

r 1> ro [12b] 
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Figure 1. Comparison of approximate solutions for the relative bubble velocity. 

Table 1. Measured and calculated parameters for the examples in figures 3-6 

Run l Run 2 
Figures 3(a), 4, 6 Figures 3(b), 5, 6(b) 

pt--initial pressure, MPa 0.1 0.1 
p--liquid density (water), kg/m 3 1000 1000 
v--liquid kinematic viscosity 

(water at 300 K), m2/s 0.8 x 10 -6 0,8 x 10 -6 
U--shock velocity, m/s 97 181 

p2lpt--pressure ratio, figure 3 2.47 2.50 
Cl--"velocity of sound", m/s 61.7 114 
at--void fraction before the shock, 

isothermal 0.0270 0.0077 
adiabatic 0.0340 0.0096 

az--void fraction behind the shock, 
isothermal 0.0109 0.0031 
adiabatic 0.0178 0.0050 

u--liquid velocity behind the shock, m/s 
isothermal 1.55 0.83 
adiabatic 1.57 0.84 

wo--initial relative bubble velocity 
(figure 6), m/s 2.8 2.2 

D--bubble diameter, mm 3.8 5.0 
B--drag paremeter, [5], m -~ 1030 780 
E--Basset force parameter, [5], s -~/2 2.39 1.82 
S--dimensionless parameter, [7] 0.0445 0.0439 

Air flow rate, cm3/s 4.20 2.73 
jg--superficial velocity, m/s 0.0064 0.0042 
v~--terminal velocity, m/s 0.225 0.585 
al--[21] 0.0287 0.0072 
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and the terminal velocity W = ~O is approached. For small times, again [12a] yields: 

W = 1 - ~bZ'r [ 1 3 ]  
l + r  " 

The value of ~b corresponding to the experimental conditions was very small, e.g. ~O 2= 0.0052 
for Run 2, with B = 780 m -1 and Wo = 2.2 m/s (see table 1 and [8]). Therefore, for the time 
intervals relevant to the experiments, gravity has a negligible effect and [13] reduces to the 
solution [11]. As mentioned above, the latter is compared to the data in section 4. 

The solutions given above are for the relative bubble velocities. In the experiments, only 
absolute bubble velocities were measured. The liquid velocities needed for comparisons of the 
experimental and analytical results were estimated from the measured shock conditions (in the 
following way), based on the derivations of Campbell & Pitcher (1958), van-Wijngaarden (1970, 
1972) and Noordzij & van-Wijngaarden (1974). Mass conservation considerations in a coor- 
dinate system moving with a shock whose velocity is U, which propagates into a liquid at rest, 
lead to: 

o(1 - a2)(u + U) = a(l - al) U [14] 

where u is the liquid velocity behind the shock and the subscripts 1 and 2 refere to the 
conditions before and after the shock. For small void fractions a~, a2 ~ 1, which is the case 
considered here, the last relationship reduces to: 

u = U(a2- oq). [15] 

The void fractions could only be roughly estimated from the photographs taken of the bubbly 
mixture, because of the small void values. Therefore, al and a2 were derived by the following 
method, according, again, to van-Wijngaarden (1070, 1972), Cambell & Pitcher (1958) and 
Noordzij & van-Wijngaarden (1974). The ratio of void fractions is related to the pressure ratio 
by: 

oq°t~ = (~)p2 "v~' [16] 

where 3, is the ratio of specific heats of the bubble if the process can be regarded as adiabatic 
and y = 1 if the temperature differences are small and isothermal conditions can be assumed. 

The shock equations also lead to the following relationship: 

P2 1 
U---~2= Pip,~,/, [171 
c~2 1 - \P2/ 

where the isothermal "velocity of sound" c~ for the bubbly mixture is given by: 

= Pl [18] CI2 p a l ( l - a l ) "  

The measurable quantities in [14] to [18], are the shock velocity U and the pressures pj and P2. 
The void fractions al, a2 and liquid velocity u can be calculated from these relations. First, the 
"velocity of sound" cl is obtained from [17] and introduced into [18] to yield the following 
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equation for al: 

P2 1 
al(1 - al) = Pt Pz 

PU2 1 - (p~)'/" 
[191 

and a2 is then found from [15]. 
The values corresponding to the experiments are given in table 1 and the results are 

discussed in section 4. It is noted that [19] has two solutions for al, but only the one 
representing the small void fraction is relevant. 

For low void fractions, at can be neglected with respect to 1 in the 1.h.s. of [19]. The 
resulting repression for al, together with the value of the void fraction behind the shock a2, 
given by [16], lead to the following expression for the liquid velocity: 

P \Pl 
u = pU (20) 

which holds for both isothermal and adiabatic conditions. This result could, indeed, be expected for 
low void fractions. The results in table 1 were obtained by an exact solution of [19] for isothermal 
andadiabatic solutions. 

EXPERIMENTAL 

The objectives of the experiments were to gather data on transient bubbly mixture flows 
and to gain information about interphase momentum transfer (by comparison with the analysis). 
In order to achieve transient motion of air bubbles, these were accelerated in water by the 
propagation of shock waves. The experiments were performed in a vertical shock tube 
(2.5 x 2.5 cm 2, 1.2 m long) as shown in figure 2. High pressure and low pressure sections were 
separated by a thin diaphragm. A rupture mechanism instantaneously ruptured the diaphragm 
which initiated the compression/shock waves into the low pressure section containing the 
two-phase (bubbly) mixture. The volumetric flow of air through the vertical column of water 
was controlled for obtaining various void values of the mixture. The propagation speed of the 
wave was monitored by using two pairs of pressure transducers (Piezotrons) which were 
checked, first, against the calibration and time response by using known pressure pulses. The 
first pair above the two-phase mixture level provided the propagation speed in air whereas the 
second pair within the two-phase column provided data on the two-phase propagation speed. 

A Schlieren arrangement, with two first surface parabolic mirrors and a laser light source 
(see figure 2), was used for high speed photography of the shock wave passage through the 
two-phase column. The framing rates were in the range of 2500 + 4500 frames/s, which enabled 
gathering of enough information for tracking the bubble movement after the shock wave 
impact. A digitizer was used in tracing the bubble motion with respect to a fixed frame of 
reference at different instants of time. This data was also used to form bubble velocity profiles. 

The pressure signals at two axial locations in the two-phase mixture are shown in figures 
3(a,b) for two different experimental runs. From these pressure histories, the transit times for a 
wave between two locations, at a fixed distance apart, were measured; this yielded direction 
measure of the average propagation speed of the wave in the bubbly flow. High-speed movies 
were taken using the optical Schlieren technique. The post-shock bubble movements as 
captured on the high speed movie frames are shown in figures 4 and 5 for two typical cases. The 
first frame in rach figure shows a bubble before the shock arrival and the subsequent frames 
show the bubble motion induced by the shock wave. Note that the bubble is in an upward 
motion before the short wave impact (see also table 1). Selected movie frames after shock wave 
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Figure 2. Schematic of the experimental setup• 
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Figure 5. Bubble motion behind the shock (Run 2). 

impacts were digitized to obtain bubble trajectories. The velocity histories of two bubbles, 
measured by this method are shown in figures 6(a, b). 

RESULTS AND DISCUSSION 

The behavior of the bubbly mixture flow induced by a shock wave was observed from the 
high-speed movies (see figures 4 and 5). Prior to the shock impact, the bubbles rose in the column due 
to buoyancy. The shock, propagating downward, induces a liquid flow behind it in the same direction 
(this motion cannot be observed in the figures because there is no reference point in this phase). In 
addition, the shock causes a step acceleration of the bubble in the same direction. This acceleration 
overcomes the buoyancy force and drives the bubble downwards (see figures 4 and 5), with a speed 
exceeding that of the liquid. This relative motion is associated with a drag force, which decelerates 
the bubble. Ideally, the bubble will decelerate to the liquid velocity and then the relative motion will 
reverse due to buoyancy and a terminal relative velocity will be established. However, as can be seen 
from figures 4 and 5, the process is quite complex. For example, the impact of the incident shock wave 
causes deformation of the bubbles; the portion of the bubble facing the shock tends to flatten. The 
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Figure 6. Bubble velocity profiles--experimental and analytical results (a) Run I (see table 1), (b) Run 2 (see 
table 1). 

bubble then oscillates and the impact of the reflected waves will cause more distortions (see figures 4 
and 5). For example, Hermans (1974) found that a pressure pulse may cause a bubble-surface 
instability. Gel'fand et aL (1975) observed that for a bubble size of 4 mm and 5 per cent void fraction;a 
pressure difference of 2 MPa causes complete shattering of the bubble. Under these conditions, the 
velocity of the shock is 300 m/s (Mach 5). 

The results for the bubble motions (figures 4 and 5) are for time durations which are smaller 
than that required for the shock to be reflected from the bottom: tr-2L/U, where L is the 
shock tube length (1.2 m) and U is the shock speed, which is much larger than the liquid 
velocity (see table 1). tr is of the order of 20 ms, while the test durations did not exceed 6 ms 
(see figure 6). 

The results for the two examples reported above are listed in table 1. As can be seen, the 
void fractions which were calculated by [19] are very small.t Therefore, a direct measurement 

tThis also justifies the assumptions on the behavior of the apparent mass coefficient, A = I/2. 
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of the a and a 2 from the photographs in figures 4 and 5 is quite inaccurate. However, values of 
the void fractions obtained by counting the bubbles and computing their volumes were found to 
be of the same order of magnitude as those in table 1. The void fraction can also be estimated 
by the following relationship (see Wallis 1969, Wilson et al. 1962): 

Otl= jglv, [21] 

where jg is the superficial gas velocity and vt is the terminal velocity before the shock. The 
former was calculated from the measured volumetric air flow rate and the latter from the 
high-speed movies. These values are also listed in table 1. The agreement between the values of 
a~ calculated by [21] and by the procedure outlined in section 2 for isothermal conditions is 
very good--within 7 per cent. The adiabatic calculations lead to higher void fraction values. 

It is noted that the relaxation time of the thermal processes in the gas phase is paCcD2/4ka 
where kc is the thermal conductivity of the gas (see Noordzij & van-Wijngaarden 1974). This 
yields a value of 300 ms, which is much larger than the shock durations of 0.2 ms (figure 3) and 
even the whole experimental times of 6ms (figure 6). On the other hand, the mixture 
temperature difference across the shock is given by (see Campbell & Pitcher 1958): 

AT = ( P 2 / P l ) 2 -  1 !ziRTi 
2p2/P1 C 

[22] 

where tzl is the mass fraction and T~ the temperature before the shock, R is the gas constant 
and C the specific heat of the liquit. The temperature difference for the experimental conditions 
(see table 1) is of the order of 0.001 K. Furthermore, for small void fractions, the liquid velocity 
behind the shock u, given by the approximation [20] is the same for both isothermal and 
adiabatic conditions. The more accurate values, calculated by [15], [16] and [19] are, indeed, 
very close for both cases as can be seen from table 1. These considerations show that while for 
the low-void mixture isothermal relations can be applied (because 3, = cflc~ .~ 1), com- 
pressibility strongly affects the behavior of the gas phase. 

The experimental results for the bubble bubble velocity profiles are plotted in figures 6(a) 
and 6(b). The curves were extrapolated in order to obtain the initial velocities Wo (at t = 0) 
immediately after the shock. The solution [11] of the relative velocity history was converted to 
dimensional values for the absolute bubble velocity using [2], [7] and [8], which the values of 
the parameters are listed in table 1. As can be seen, the agreement between the analytical and 
experimental results is quite good. This indicates that a simplified analysis, based on a constant 
drag coefficient co = 2.6, can be used at least as a first approximation, to characterize the 
transient bubble motions in the relevant range of Reynolds number 2000-12,000, the former 
value corresponds to the relative velocities at the termination of the experiments and the latter 
to the initial velocities (see figure 6 and table 1). 

A more detailed analysis will be required in order to interpret more sophisticated experi- 
ments and additional complex phenomena. Moreover, the information on the bubble behavior 
inside the shock is still unavailable, van-Wijngaarden et al. (1970, 1972, 1974, 1976) studied the 
shock behavior and void fractions but these methods have not been extended yet to describe 
the bubble motions. For example, the bubble velocity at the back of the shock cannot be 
calculated by any existing theory. 

Acknowledgements--The authors wish to thank Dr. R. B. Duffey for his helpful comments and 
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APPENDIX 

The equation of motion of the bubble [1] was written in a generalized form; the drag force 
includes the drag coefficient co. The equation is solved here for low Reynolds numbers, where 
cD = 24/Re. Introducing this correlation into [1], the following form is obtained (with the same 
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assumptions of section 2): 

- - =  E ~t dw/dt' - , dw b w - 2 g -  
dt ,Io X/-(-~-- ?) dt [AI] 

where E is defined in [5] and 

3z:vD 36v 
b--  AV = D  2" [A2] 

Equation [1] is written in the following non-dimensional form: 

dW f: dT = -  W - a t t 2 - ( I ) 2  dW[dT' ,~, XT(Y -- -T') o J  [A3I 

where 

W -  w T -  bt, ~ 2 -  2g E 
W--oo ' wob ' ¢b - ~ [A41 

and Wo is the initial velocity. It is noted that the characteristic time is different than that in 
section 2. For small times, the buoyancy term ~2 can be neglected. The resulting integro- 
differential equation [A3] is then solved in a manner similar to that used in section 2. The 
dependent variable W is written in terms of d W/d T; the integral equation, resulting from [A3] 
is solved for the latter by the method of successive approximations and then the solution is 
integrated once to yield W. This leads to the following series form: 

W = l - T + ~ d p T 3 / 2 + ( ~ - ~ T r c b 2 )  2 16 ( 1 - 2 q b 2 )  TS/2+. T -~$ .. 

=I-T+ T2+ .... +~-~r(1)2T2-~(1) I-2(I)2 TSn... [A51 

where the first terms represent the expansion of W = e -r, which is the solution without the 
Basset force. 

For the experiments reported in this work, the values of b are 1.99 and 1.55 s -~ (see [A2] and 
table 1 for Runs 1 and 2) and qb = 1.70 for both examples ([A4] and table 1). The durations of 
the experiments were about 5 ms (figure 6); this gives a range of 6 × 10 -3 for the dimensionless 
time T (see [A4]). The solution [A5] yields, then, 

W =  1 - 6 ×  1 0 - 3 +  1.1 × 10 -3 . [A61 

The deviation from the initial velocity (W = 1) is very small and cannot represent the data in 
figure 6, for which the Reynolds numbers are large. The result [A6] also shows that for lower 
Reynolds numbers, the Basset force is important--it corresponds to about 22 per cent of the 
velocity changes. 


